Equipment List

2018
To respond in the most efficient way, we have pre-packaged some of the equipment into loads that are suitable for most spills and operational environments.

An effective response depends on a structured or tiered escalation of response capability (equipment, trained responders and enabling logistics), using a toolbox approach to response techniques. Net Environmental Benefit Analysis (NEBA) and Spill Impact Mitigation Assessment (SIMA) are used as a planning and a response technique selection process to ensure that the most appropriate techniques are utilised and that affected stakeholders are fully engaged in a science-based approach to determine the overall response strategy. Response advocacy, based on experience and good-practice may be needed to help overcome barriers that restrict or prevent the best technical approaches from being followed.

A Service Level Agreement (SLA) Global Report is available for download in PDF from https://www.oilspillresponse.com/activate-us/equipment-stockpile-status-report for a quick and timely overview of the availability of our equipment stockpile.
Application

We have a range of communications equipment suitable for setting up a field command post to relay information to the command centre and coordinate tactical response operations.

VHF Base Stations and VHF Repeater Stations are compatible with all internationally recognised marine VHF channels and offer robust communications links in areas without cell phone coverage.

We offer Satellite Communications Packages, including Iridium satellite handheld phones, and Broadband Global Area Network (BGAN), which is provided by INMARSAT to allow internet access from virtually all areas of the world (except for polar regions). The use of this simple and portable BGAN allows access to email and other office applications.

We also provide portable shelters for use as a command centre, a first aid post, a maintenance area and as a shelter for personnel taking rest breaks.
Application

We hold a variety of dispersant application systems. Our integrated wide area aerial dispersant systems contribute to this key capability via TERSUS for our Boeing 727 and RIDSS for our Hercules C-130A.

We also offer various boat-mounted systems that can be used to treat smaller volumes of oil, or to supplement the aerial system through targeted spot treatment.

Dispersant effectiveness monitoring equipment, including fluorometers are deployed to support any dispersant operation. Additional monitoring and surveillance data can be provided by tracking buoys, remote sensing and oil spill computer modeling.
Inshore Booms / Shoreline Recovery Devices

Application

Due to the variety of operational conditions we may encounter, we hold a range of booms types that can be used for offshore, nearshore and shoreline responses.

Offshore booms are larger and made from a heavier duty material. These are typically supplied on a reel and can be mounted securely on the deck of a suitable vessel to facilitate safe deployment.

The majority of our shoreline booms are air-inflatable to reduce the space required during shipping. Booms typically come in 10-metre or 20-metre sections and can be joined to build any required configuration.

We hold a large range of recovery devices that can be used on light, medium and heavy oils across all environments.

When used together, skimmers and booms allow recovery systems to be built for almost all situations. Our Duty Manager will assess the conditions, to select the most appropriate equipment package.
Disc skimmers are available in various capacities for inshore/harbour/river operating areas.
SHORELINE RESPONSE

Oiled Wildlife Response

Application
We hold a range of specialist wildlife response equipment, which can be used to assist with the rescue, initial treatment and rehabilitation of wildlife. This equipment, which was selected by professional wildlife responders, can be easily shipped together with other response equipment and utilised by trained wildlife response personnel.

Temporary Storage Equipment

Application
We have several options for temporary waste storage. If recovery storage vessels are not available during offshore containment, the recovered oil can be temporarily stored in inflatable barges which come in two sizes: 25m³ or 50m³. Waste containment tanks are also available with a capacity of 9m³. These tanks are used together with a heating system that is capable of heating high pour point oil during the offshore and shoreline recovery.

Alternatively we can provide inflatable oil storage bags with storage capacities of 100m³, 200m³, and 500m³. Temporary portable storage tanks are available in two sizes: 7.57m³ or 2,000 gallons and 4.16m³ or 1,100 gallons.
Vehicles & Vessels (regional use)

Application

We can provide a variety of vehicles suitable for response duties. In a shoreline environment, off-road vehicles offer a safe and efficient way of moving equipment in the spill location. Larger vehicles, such as 4x4s and tractor units can also be provided to transport people and equipment.

We offer a variety of vessels such as small inflatable vessels, RIBs, workboats and fast response vessels for inshore and coastal response. These vessels are for regional use only.

For harbour and near shore waters, our 20-metre catamaran vessels can be equipped with a variety of response equipment depending on the nature of the spill. These vessels are for regional use only.
Offshore Booms / Offshore Recovery Devices

Application

We have a variety of booms that can be used to concentrate the oil for recovery in the often challenging offshore environment.

In certain circumstances, for example continued release scenarios, we are able to provide active booms systems with built-in recovery capability for uninterrupted containment and recovery operations.

In recent years the technology for offshore containment and recovery operations has evolved to address one of the biggest limiting factors in recovery efficiency; encounter rate. Traditional booms are limited to speeds of < 0.75 knots to avoid loss of containment, however new enhanced recovery systems increase this speed, so allowing a higher encounter rate and a greater recovery rate of oil. OSRL holds a number of such enhanced recovery systems in our global stockpile.

OFFSHORE INFLATION BOOM

DISC SKIMMER

WEIR SKIMMER

Weir skimmers are available in various capacities:

- 30, 70, 125 m³/hr

DRUM SKIMMER
OFFSHORE RESPONSE

In-Situ Burn

Application
Controlled burning can be an extremely valuable response technique when responding to oil releases in remote locations. *In-situ* burn operations can be conducted safely with our water cooled booms in Southampton and Singapore which compliment the stock of fire boom held in Fort Lauderdale.

A guidance document on Health, Safety and Monitoring has also been developed to support such response.

Monitoring equipment is used when carrying out *in-situ* burning for the real-time detection of airborne particulates, fumes and aerosols.

Ancillaries
- Reel-mounted fire booms
- Hydraulic power packs
- High rate water pumps
- Handheld ignition devices
- Boom support packages and spares

ANCILLARY EQUIPMENT

Transfer Pumps, Power Packs and Generators

Application
We have a range of general purpose transfer pumps with different capacities depending on the required application. We have several types of diesel hydraulic power packs that are suitable to operate mechanical oil recovery devices, boom reels and deployment ancillaries.

All power packs are provided with the necessary spares kit and ancillaries.

Images:
- In-Situ Burn: FIRE BOOM, WATER PUMP, MICRODUST PRO AIR MONITOR
- Transfer Pumps, Power Packs and Generators: DISPLACEMENT PUMP, PERISTALTIC PUMP
Site Safety & Cleanup

Application

We hold a large variety of ancillary equipment suitable for different aspects of oil spill response environments.

Pressure washers are available to clean response equipment and oiled man-made structures.

Powered floodlights are also available for use onshore and offshore.

We also provide area and personal gas monitors for deployment at on-site entry and where required.
AVIATION CAPABILITY

Locations of aircraft are updated on www.oilspillresponse.com

Boeing 727
Provides wide area dispersant application

Location: Doncaster, UK
Range: 2,500 nautical miles in 5 hours
Dispersant Capacity: 15,000 litres

Hercules C-130A
Provides wide area dispersant application

Location: Malaysia
Mobilisation time: 6 hours
Range: 2,350 nautical miles in 8 hours
Dispersant Capacity: 13,000 litres

Piper PA-31 Navajo
Provides aerial surveillance service

Location: Doncaster, UK
Mobilisation time: 60 minutes (within daylight hours)
System Capability: OFIL Turret fitted with DSLR camera, HD video camera, laser range finder, ultraviolet and infrared sensors

Embraer 110 Bandeirante
Provides dispersant test spray and aerial surveillance service

Location: Accra, Ghana
Mobilisation time:
4 Hours (Surveillance)
6 Hours (Dispersant)
Dispersant Capacity: 2,000 litres

The TERSUS System

The Tersus system is the world's first jet based aerial dispersant system and was developed by OSRL and 2Excel Aviation. The system was designed under the latest and more stringent regulatory requirements. It consists of 7 double skinned tanks, a pump module, service pallet, compressed air reservoir, and venting system.

The system is controlled and operated by the flight crew from within the cockpit. It also has a calibrated flow meter linked to a logging system to track dispersant application.

The Tersus system is compatible with nine types of dispersants, with a capacity of 15,000 liters and a variable flow rate of between 500 to 1,200 liters per minute.

The dispersant is applied at an altitude of 150 feet and speed of 150 knots.

RIDSS

The Rapid Installation and Deployment Spray System (RIDSS) allows multiple types of dispersants to be applied in precise patterns at variable dosages that can be adjusted in flight. It also enables the aircraft to remain pressurized (with the rear cargo ramp closed) during dispersant operations. This system is installed in our C-130 aircraft from International Air Response.

We also hold the Airborne Dispersant Delivery System (ADDS) Pack which is used for dispersant spraying where a high treatment rate is required. Our ADDS packs are held in a reserve readiness state as potential support to the Boeing 727 and Hercules C-130A spray capabilities.
PRE-PACKAGED LOADS

Much of our equipment is prepackaged into tried and tested systems suitable for almost any scenario. These packages shorten deployment times and allow equipment capabilities to be easily matched to support the chosen response strategy. Of course, every spill is different and following discussions with our Duty Manager, your equipment packages can be tailored to suit your specific requirements. For example additional equipment such as mobile command centres or ATVs can be added to supplement the standard packages.

High Volume Recovery Systems (Offshore)
(UK Load 11)

Application: The high volume offshore recovery package is designed to provide offshore recovery for light, medium or heavy oils using oleophilic brush skimmer method. The system is situated on a 20ft offshore certified (DNV) flat rack container with a built-in crane to enable easy and efficient mobilisation of the whole system.

Contents: Large Brush Skimmer / Hose Reel x 2 / 119kW Power Pack with inbuilt air fan / HIAB crane

High Volume Offshore Recovery Systems (Containment & Recovery)
(UK Load 4)

Application: The weir boom has the capability to concentrate and collect large quantities of oil at sea and to remove this oil via its integrated skimming system. The system will operate in moderate sea states with wind speeds up to 21 knots and wave heights up to 3m, though operational efficiencies will be reduced as these extremes are approached. The system is designed with the capability to be air-freighted.

Ancillaries: Weir Pumps / Recovered Oil Discharge Pump / System Hoses / Reel Controls / Reel drive / Water Pump

Fast Response Trailers
(Bahrain Load 1 & 2)

Application: The trailers have been equipped with shoreline booms and ancillaries to enable us to react quickly and deploy rapidly to protect a specific site at risk. Due to the region’s reliance on salt water intakes for numerous uses, the load provides the capability for prompt action in order to protect this vital resource from contamination.

Contents: Shore Sealing Boom / Nearshore Inflation Boom / Ancillaries for deploying equipment

Shoreline Package Standard
(UK Load 5)

Application: A shoreline clean up and protection package packed into our unique aircraft pallets, designed for use with side loading aircraft. The package consists of 16 pallets which can be supplemented with other palletised or non-palletised equipment from the stockpile.

Contents: Nearshore Inflation Boom 240m in 10m & 20m lengths / Shore Sealing Boom 400m in 10m & 20m lengths / Boom Ancillary Pallet / Command Pallet / Disc Skimmers capacity 12 & 20 ton per hr / Vacuum system / Inflatable Shelters / Portable Frame Tanks x 8 / Displacement Pumps x 3 / Decontamination Station

Shoreline Package Standard Supplement
(UK Load 8)

Application: A shoreline clean up and protection package packed into our unique aircraft pallets, designed for use with side loading aircraft. This load would typically be used in addition to Load 5 for shoreline protection.

Contents: Nearshore Inflation Boom 390m in 10m and 20m lengths / Shore Sealing Boom 320m in 10m and 20m lengths / Boom Ancillary Pallet / Command Pallet / Disc Skimmer capacity 7 ton per hr / PPE Pallet / Discharge Hose Pallet / Portable Frame Tanks x 7 / Vacuum system / Transfer Pump

Shoreline Package Heavy Oil Supplement
(UK Load 9)

Application: A shoreline clean up and protection package packed into our unique aircraft pallets, designed for use with side loading aircraft. This load would typically be used in addition to Load 5 for shoreline protection when heavy oil pumping is required.

Equipment Delivery: Nearshore Inflation Boom 80m in 10m and 20m lengths / Shore Sealing Boom 80m in 10m and 20m lengths / Boom Ancillary Pallet / Archimedes Screw Pumps X 2 / Weir Skimmer capacity 20 & 30 ton per hr / Drum Skimmer capacity 30 ton per hr / Disc Skimmer capacity 40 ton per hr / 84 kW Power Pack X 2 / 23 kW Power Pack / Discharge Hose Pallet / Portable Frame Tanks x 7
Capping Stack System & Subsea Incident Response Toolkit (CSS/SIRT)

Through a Supplementary Agreement we can provide our Members with access to an integrated intervention system comprising of four Capping Stacks and two Subsea Incident Response Toolkits.

We own, store and maintain four capping stacks in four international locations – Brazil, Norway, Singapore and South Africa. They are maintained ready for immediate mobilisation and onward transportation by sea and/or air in the event of an incident. Subscription to CSS/SIRT provides our Members with access to the capping stacks and the ability to mobilise two in the event of an incident. Subscription also provides access to the Subsea Incident Response Toolkits which are an integral part of capping operations enabling BOP intervention, debris clearance and the subsea application of dispersant at a wellhead. They assist in creating safer surface working conditions for response personnel and enhance the degradation of the oil.

STANDARDISED CAPPING PLATFORM

1. Retrievable Choke
2. Flow Line Connector
3. Acoustic Transponder
4. Outlets with Dual 5 ⅛” 15k Gate Valves
5. ROV Panel
6. Lower Connector
7. 10k stack with 7 1/16” gate valves, 15k stack with 18 ¾” bore BOP

KEY FACTS

- Two capping stacks developed to handle pressure up to 15k PSI (Brazil and Norway).
- Two capping stacks designed for pressure up to 10k PSI (Singapore and South Africa).
- Designed, optimised and standardised to meet the majority of anticipated oil well conditions in deep water drilling around the world.
- Subsea Incident Response Toolkits (SIRT) are stored in Brazil and Norway ready to be mobilised in the event of an incident.
Containment Toolkit

This containment toolkit offers an opportunity to further develop existing subsea well response capability and complements the subscription to the Capping Stacks/SIRT via an additional Supplementary Agreement. If well-shut in is not possible, the subsea well containment toolkit can be deployed to enable the flow of well hydrocarbons from the capping stack to an offloading tanker.

The containment toolkit is designed to supplement standard industry well test hardware to create a containment system. It comprises long-lead equipment not currently readily available in the industry and minimises response times by allowing a responding well operator to draw on existing resources.

The toolkit is stored in strategic locations around the world to facilitate timely response. The flexible pipes are stored in three regional sets in Brazil, UK and Singapore. All other containment toolkit components are air-freightable and are stored at the original equipment manufacturers’ facilities in the UK, Houston and Norway.

SUBSEA WELL CONTAINMENT TOOLBOX SPECIFICATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water depth</td>
<td>Up to 3,000m</td>
</tr>
<tr>
<td>H2S content</td>
<td>0 to 500ppmV</td>
</tr>
<tr>
<td>Design temperature (operation)</td>
<td>-1°C to 130°C</td>
</tr>
<tr>
<td>CO₂ content</td>
<td>0 to 10 mol %</td>
</tr>
<tr>
<td>Containment toolkit storage life</td>
<td>20 years</td>
</tr>
<tr>
<td>Max temperature</td>
<td>130°C (operation)</td>
</tr>
<tr>
<td>Design operating life</td>
<td>2 x 6 month deployments</td>
</tr>
<tr>
<td>Design temperature (storage)</td>
<td>-20°C to 40°C</td>
</tr>
<tr>
<td>Transportability</td>
<td>Air (Boeing 747-400 ERF; excluding flexible flowlines), land and sea</td>
</tr>
</tbody>
</table>

How it works

The containment concept relies on existing drilling rigs and commercially-available well-testing equipment to capture fluids from an incident well and flow them to the surface for processing and disposal.

From the capping stack, hydrocarbons are directed through the flowline end termination (FLET) via flexible pipes. From the FLET, the flow continues through a flexible pipe and the flow-spool assembly into a standard well testing riser terminating at a mobile offshore drilling unit (MODU). Well hydrocarbons are processed in the standard surface well testing equipment, stabilised and then offloaded to a tanker positioned at a safe distance from an incident well.

To maintain flow assurance, hydrate inhibitor can be supplied via the coiled tubing spread deployed on a marine vessel to a coiled tubing termination head (CTTH) and onward to the chemical distribution assembly (CDA). The hydrate inhibitor can be delivered to the FLET and capping stack via the CDA.

Flowline end termination and Connectors (FLET)

Subsea hardware installed at the end of flexible pipes to enable ROV operated functions, venting functionality and pressure control.

- **Location:** Houston, USA
- **Size:** 6.2m x 2.5m x 3m
- **Weight:** 32 tonnes

Diverless subsea connectors

Standard ROV operated subsea hardware used to connect flexible pipes to a capping stack, FLET, flow spool assembly and burst disk trees.

- **Location:** Minnesota, USA
- **Size:** 1.6m x 1.2m x 1.9m
- **Weight:** 3.3 tonnes

Chemical distribution assembly (CDA)

Hardware for distribution of hydrate inhibitor to the FLET and/or to the capping stack.

- **Location:** Stavanger, Norway
- **Size:** 2.5m x 2m x 2.3m
- **Weight:** 6 tonnes

Hose end valves (HEV)

End valves on the marine offloading hoses for safe coupling to the offloading tanker.

- **Location:** Stavanger, Norway
- **Size:** 1.5m x 1.8m x 1.1m
- **Weight:** 2.5 tonnes

Pumps and Coolers

Transfer pumps stabilise crude from low pressure separators to the offloading tanker. The cooling system ensures that stabilised crude meets the temperature specification for the storage tanker.

- **Location:** Port of Blyth, UK
- **Size:** Ranging between 6m and 9m in length x 2.3m x 2.5m
- **Weight:** between 7.8 and 12.5 tonnes

Flow spool with subsea test tree latch

Assembly that connects the flexible pipes to a standard well testing riser and interfaces with standard wellhead foundation and MODU BOP equipment.

- **Location:** Houston, USA
- **Size:** 4.3m x 3.7m x 3.8m
- **Weight:** 43.5 tonnes

Coiled tubing termination head (CTTH)

A hydrate inhibitor distribution hardware suspended from the coiled tubing to de-couple the dynamic section of the coiled tubing riser from the static CDA.

- **Location:** Stavanger, Norway
- **Size:** 1.5m x 1.1m x 1.8m
- **Weight:** 3 tonnes

Deployment reels for flying leads

The 1” and 2” flying leads are coiled on deployment reels for safe subsea installation of flying leads between the CTTTH, CDA, capping stack and the FLET, for hydrate inhibitor supply to the cap or FLET(s).

- **Location:** Stavanger, Norway
- **Size:** 6.2m x 2.4m x 2.6m
- **Weight:** > 12 tonnes

Flexible pipes

Connect pipe between the capping stack, FLET and the flow-spool assembly.

- **Location 1:** Blyth, United Kingdom
- **Location 2:** Angra, Brazil
- **Location 3:** Loyang, Singapore
- **Inner diameter:** 6”
- **Lengths:** 250m, 850m, 1200m

Marine offloading hoses

 Allows secure transfer of hydrocarbons from the capture vessel to the offloading tanker.

- **Location:** Port of Blyth, UK
- **Size:** 11m x 3.2m x 1.6m
Offset Installation Equipment

Offset Installation Equipment (OIE) is the latest toolkit available in SWIS. In the event of a subsea well incident, OIE allows responding personnel to remove or install capping, containment or related equipment from a safe offset distance from an incident site.

How it works

A carrier, which forms the main item of OIE, comprises the following main equipment:

- Ballast tanks with air connection to topside compressors
- A winch system to control the carrier position and lift payloads
- A Cardan joint for capping stack positioning
- ROV interface for controlling all carrier functions from the topside control room

The carrier is initially submerged from a vessel using a depressor weight and free flooding of the four ballast tanks. Once submerged, a drag chain provides passive height control (relative to the seabed) which allows the carrier to be moved laterally by vessels into the vicinity of the incident well.

Positive buoyancy of the carrier is maintained using the ballast tanks, clad with buoyancy modules, and when used in conjunction with the ballast tank air system, provides sufficient uplift to carry a variety of response equipment payloads.

Positional control of the carrier in the vicinity of the well is achieved using mooring winches. Once over the well, the Cardan joint provides the capability to align and lower the capping stack (or other equipment) onto a blowout preventer (BOP or wellhead).

The carrier is controlled via a Well Owner sourced remotely operated vehicle (ROV) which provides an interfaced for hydraulics, power and communications.

Other equipment to support OIE Carrier intervention operations include control and workshop containers, assembly and transport equipment and air supply equipment from topside to subsea.

KEY FACTS

- OIE can be deployed up to 500m offset from an incident site
- Suitable for use in working depth range of 75-600m
- Compatible with OSRL’s capping equipment
- Available to the international oil and gas industry via membership of OSRL and a supplementary subscription
OSPRAG Capping Device - UKCS

OSPRAG is a key component in the UK offshore oil and gas industry’s comprehensive oil spill contingency plans, which also includes oil control, containment, recovery, dispersant (aerial and subsea) and shoreline protection using booms. The capping device is held at an operational base in Aberdeen, Scotland and can be deployed quickly from a multi-service vessel or drilling rig. Its size and weight means it can be transported by a wide range of vessels.

KEY FACTS

- Built to seal off an uncontrolled subsea well in the unlikely event of a blowout, minimising environmental damage and buying valuable time for engineers to develop a permanent solution to seal the well.
- Modular design means it can be attached to various parts of subsea equipment and deployed to the widest possible range of subsea well types and oil spill scenarios which could occur – including in the deep waters and harsh conditions West of Shetland.
- Portable size and weight also makes it relatively easy to deploy quickly from a wide range of vessels, even during short weather windows.

Images by Crucial Visual Communications Consultancy Ltd
Global Dispersant Stockpile

Global Dispersant Stockpile (GDS) is a readily accessible and easily mobilised global stockpile of dispersant for industry use. The dispersants chosen are those with the widest worldwide approvals. Subscription to GDS provides critical, immediate access to substantial amounts of dispersant enabling application to be conducted at the site of the well incident, providing a safe area for the capping device deployment.

The stockpile is large enough to provide for serious incidents and it is stored globally across multiple locations, to meet a faster response to the regions. There are freight retainer arrangements at the locations to guarantee response.

In the event of a subsea incident, the stockpile will be able to supply up to 30 days of dispersant* response application using the total supplies from various locations. This 30-day leeway will cover a significant portion of time, which allows both dispersant suppliers to ramp up their production as well as alternative global sources to be identified, to meet the demand for a continual supply.

The stockpile can be used independently for any incident, whether subsea or on the marine surface.

This stockpile can also be used with the Subsea Incident Response Toolkit (SiRT). A GDS Member may gain access to the stockpile either on a long term or short term agreement. An annual subscription applies to both terms, to support the ongoing infrastructure, maintenance and exercise procedures – ensuring the dispersant is response ready.

* dependent on application and environmental conditions

APPROVALS

The dispersant types chosen for the stockpile cover the widest range of global approval.

Many countries in Africa and Europe do not have a set dispersant approval regime, but in an emergency, OSRL will assist the GDS Member seeking regional approval for use.

SPECIFICATIONS AND LOCATIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>QUANTITY (m³/US gal)*</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasic Slickgone NS</td>
<td>500 / 132,500</td>
<td>Southampton, UK</td>
</tr>
<tr>
<td></td>
<td>350 / 92,750</td>
<td>Singapore, Singapore</td>
</tr>
<tr>
<td>Finasol OSR 52</td>
<td>500 / 132,500</td>
<td>Southampton, UK</td>
</tr>
<tr>
<td></td>
<td>350 / 92,500</td>
<td>Singapore, Singapore</td>
</tr>
<tr>
<td></td>
<td>1500 / 397,500</td>
<td>Vatry, France</td>
</tr>
<tr>
<td></td>
<td>800 / 212,000</td>
<td>Cape Town, South Africa</td>
</tr>
<tr>
<td>Corexit EC9500A</td>
<td>500 / 132,500</td>
<td>Fort Lauderdale, USA</td>
</tr>
<tr>
<td></td>
<td>500 / 132,500</td>
<td>Rio de Janeiro, Brazil</td>
</tr>
</tbody>
</table>

*Quantities at each location are provisional figures only and may be subject to change.

MOBILISATION

<table>
<thead>
<tr>
<th>TASK/ACTION</th>
<th>OSRL</th>
<th>MEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to a response</td>
<td>Storage and maintenance of stockpile</td>
<td>Annual subscription fees paid by Members</td>
</tr>
<tr>
<td>On mobilisation</td>
<td>Loading of dispersant and ancillary equipment onto Members arranged transport at OSRL storage facility.</td>
<td>Arrange transport of dispersant (including insurance) from OSRL storage facility to final destination. OSRL will provide assistance throughout this process where required.</td>
</tr>
<tr>
<td>During response</td>
<td>Can provide advice and assistance on request</td>
<td>Responsible for engaging with local government with regards to dispersant use</td>
</tr>
</tbody>
</table>

DISPERSENT COUNTRIES OF APPROVAL

<table>
<thead>
<tr>
<th>Dispersant</th>
<th>Countries of Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasic Slickgone NS</td>
<td>Australia, Benin, Cyprus, France, Greenland, India, Israel, Libya, Malaysia, New Zealand, Nigeria, Norway, Philippines, ROPME Countries (Bahrain, Kuwait, Oman, Saudi Arabia, United Arab Emirates, Iraq, Iran, Qatar), Singapore, Togo, United Kingdom</td>
</tr>
<tr>
<td>Finasol OSR 52</td>
<td>Angola, Australia, Benin, Cameroon, Congo, Croatia, Cyprus, Egypt, France, India, Indonesia, Israel, Kazakhstan, Malaysia, Morocco, Nigeria, Norway, Philippines, Portugal, ROPME Countries (Bahrain, Kuwait, Oman, Spain, Saudi Arabia, United Arab Emirates, Iraq, Iran, Qatar), Singapore, Thailand, Togo, Uruguay, United Kingdom, United States of America</td>
</tr>
<tr>
<td>Corexit EC9500A</td>
<td>Angola, Argentina, Benin, Brazil, Chile, France, Israel, Libya, New Zealand, ROPME Countries (Bahrain, Kuwait, Oman, Saudi Arabia, United Arab Emirates, Iraq, Iran, Qatar), Singapore, Trinidad, United States of America</td>
</tr>
</tbody>
</table>

Contact at time of print
United Kingdom Dispersant Stockpile

United Kingdom Dispersant Stockpile (UKDS) is a readily accessible and easily mobilised stockpile of dispersant for industry use within the UKCS. Dasic Slickgone NS is located at Inverness (200m³) and Scalloway Shetlands (300m³). Subscription to UKDS provides critical, immediate access to substantial amounts of dispersant, support and dispersant application equipment.

The stockpile is large enough to provide for a serious UKCS incident and strategically located to meet a fast response. There are freight retainer arrangements at the locations to guarantee response.

In the event of a large incident, the stockpiles will cover a significant portion of time, allowing both dispersant suppliers to ramp up their production as well as alternative global sources to be identified, to meet the demand for a continual supply.

The stockpile can be used independently for any incident, whether subsea or on the marine surface.

This stockpile can also be used with the Subsea Incident Response Toolkit (SIRT). A UKDS subscriber may gain access to the stockpile on a short-term agreement if required. An annual subscription applies in order to support the ongoing infrastructure, maintenance and exercise procedures – ensuring the dispersant is response ready.

STOCKPILE SUPPORT EQUIPMENT

Both the stockpiles include the following support equipment for use either at the warehouse or to be mobilised to the scene of the incident:

- TC3 helicopter slung dispersant application system
- Boat Spray 50 vessel application system
- Going away box, providing spillage mitigation, PPE, tools and a bulk transfer pump system
- 1000 ltr spillage bin and IBC sump

SPECIFICATIONS AND LOCATIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>QUANTITY (m³)</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasic Slickgone NS</td>
<td>200</td>
<td>Inverness, UK</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Scalloway Shetlands, UK</td>
</tr>
</tbody>
</table>
CONTACT US

AMERICAS

BRAZIL
Praça Lopes, Trovão s/n,
Angra dos Reis, Rio de Janeiro,
Brazil, CEP 22900-600
T: +55 24 3421 5480
E: brazy@oilspillresponse.com

FORT LAUDERDALE
Oil Spill Response (Americas) Limited
2381 Stirling Road, Ft Lauderdale,
FL 33312 USA
T: +1 954 987 3001
F: +1 954 987 3001
E: fortlauderdale@oilspillresponse.com

HOUSTON
Oil Spill Response (USA Inc)
CityCenter One,
800 Town & Country Blvd,
Suite 300, Houston, TX, 77024,
USA
T: +1 832 431 3191
F: +1 832 431 3001
E: houston@oilspillresponse.com

EUROPE, MIDDLE EAST & AFRICA

ABERDEEN
Suite 3, Second Floor,
Ocean Spirit House West,
32 Waterloo Quay,
Aberdeen, AB11 5BS
United Kingdom
T: +44 (0)1224 726859
F: +44 (0)1224 726860
E: aberdeen@oilspillresponse.com

BAHRAIN
PO Box 54211, Manama,
Kingdom of Bahrain
T: +973 1773 0961
F: +973 1773 0058
E: bahrain@oilspillresponse.com

GHANA
OSRL Ghana Ltd
C290/14 Okwei Lane
Dzorwulu, Accra, Ghana
T: +233 30 279 7555
F: +233 30 279 7554
E: cslghana@oilspillresponse.com

ITALY
Sapem S.p.A. - Adriatimal
Porto Franco Vociaco
34143 Trieste, Italy
E: trieste mailing@oilspillresponse.com

NORWAY
Risavika Havnering 235,
4098 Tananger,
Norway
T: +47 95284299/ 91806074
E: norway@oilspillresponse.com

SOUTHAMPTON
(REGISTERED OFFICE)
Lower William Street,
Southampton, SO14 5OE
United Kingdom
T: +44 (0)23 8033 1551
F: +44 (0)23 8033 1972
E: southampton@oilspillresponse.com

SOUTH AFRICA
Old MossGas Site,
1132 Camp Street,
Saldanha Bay, South Africa 7395
T: +27 22 714 3211
F: +27 22 714 3626
E: southafrica@oilspillresponse.com

ASIA PACIFIC

AUSTRALIA
Oil Spill Response PTY Ltd
108 St. Georges Terrace
#02-03
Perth, WA 6000, Australia
T: +61 8 6557 8552

SINGAPORE
25C Loyang Crescent,
Loyang Offshore Supply Base
(Block 503 TOPS Avenue 3)
Singapore 569818
T: +65 6266 1566
F: +65 6266 2312
E: singapore@oilspillresponse.com

Fort Lauderdale
Oil Spill Response (Americas) Limited
2381 Stirling Road, Ft Lauderdale,
FL 33312 USA
T: +1 954 983 9880
F: +1 954 987 3001
E: houston@oilspillresponse.com

For corporate and membership enquiries please contact membershipteam@oilspillresponse.com
For Subsea Well Intervention Services enquiries please contact subseaservices@oilspillresponse.com
For all other enquiries please contact your nearest regional base.

www.oilspillresponse.com